HEAT EXCHANGE DURING LAMINAR FLOW OF CHEMICALLY
REACTIVE NO, GAS IN A FLAT TUBE WITH BOUNDARY
CONDITIONS OF THE SECOND KIND
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The resuits of a ‘c'alculation of heat exchange during the laminar flow of a chemically
reactive gas in a flat tube are presented. '

The problem of heat exchange during the laminar flow of liquids in tubes has obtained considerable
development for liquids with constant and variable (monotonically changing) properties [1]. For chemi-
cally reactive gases reports are known in which heat exchange under conditions of chemical equilibrium
is studied. In this case the chemical reaction is taken into account by means of "effective" thermophysical
properties and the problem of heat exchange is reduced to the analogous problem for a chemically uniform
gas with properties which are strongly dependent on the temperature. An extensive bibliograph on the
study of heat exchange in these directions is presented in Petukhov's report [2].

At present not enough attention is paid to the effect of the chemical reaction rate on heat and mass
transport during the laminar flow of a chemically reactive gas, A report can be mentioned [3] in which
the problem of heat exchange during the laminar flow of a chemically reactive stream of NyO, = 2NQ, in
a tube was solved numerically. The boundary conditions were assigned from the conditions that the wall
temperature is constant and the concentration gradients of the mixture components at the wall are equal
to zero. The results of the numerical calculation presented for different values of the rate constant indi-
cate the considerable effect of the chemical reaction rate on the heat exchange.

We have studied the effect of the kinetics of the chemical reaction 2NQ, ==2NO + O, during the laminar
flow of this system in a flat tube in the case of heating with boundary conditions of the second kind,

Let us examine the laminar flow of the chemically nonequilibrium gas 2NO, ==2NO + O, in a heated
flat tube in the boundary layer approximation with the following assumptions,

The gas flow is stationary and hydrodynamically stabilized, the gas is incompressible, its physical
properties are constant (cpgs Af» Dis ps s Qp), and the Lewis number Le = 1, At the entrance to the heated
channel the temperature and concentrations of the gas components are constant over the cross section and
the velocity profile is parabolic. The density of the heat flux qy at the wall is assumed to be constant.

The stoichiometric ratio Cy/m, = C;/2m; exists between the concentrations of the components NO and O,.
The latter assumption simplifies the chemical reaction under consideration and reduces it to the type
2A = 3B. With these assumptions we obtain a system of differential equations in dimensionless form:
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Boundary conditions:
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Fig, 1. Distribution of temperature (a) and concentration of
0, component (b) over radius of flat tube: 1) X = 0.875 - 1074
2) 0.875+1073; 3) 0.875-107%; 4) 2.63+107%; 5) 5.26 - 107%; 6)

8.75 1072,
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The neglect of the term E g (0hy,/ 8Y) in Eq. (1) is a consequence of the assumption that the thermal
k=1
effect of the chemical reaction is constant,

Using the equations

2m
Eqk =0 gy —2 g,
my
k=1
we obtain
g, 4 00,
T ay m, oY

The chemical reaction rate was determined from the following equations:

(G Y e K (2,

m, K my J

) 4)
Leml C—l— Mg, g =T
: m, RT

The chemical reaction rate constant [4] and the equilibrium constant [5] are:

Keo = 0.5-10°%6 exp (— 26900/RT);

InK, = —0.5845 In (T'- 107%) +- 12.5862. 10* -Tl_ — 147.088- 10° % + 17.5121—0.3079. 1057

— 1.6017.107872 —0.1183- 10722 73,
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g0’ ' ‘ Besides the determination of the main characteristics of the chemically

3 : £\ ‘ reactive stream calculations were also made of the average mass tem-
' perature
1 _ 1
5)’“\ 8= {eady, ()
, :
7 the average mass concentration of the O, component
C= f CodY, - : ©
0
p and the average over the cross section of the mass source of the O,
/ B component
J A A | L [ ay. o
p .
[

The parabolic type system of differential equations (1) and (2) in

g % B ¥
- o . partial derivatives with the boundary conditions (3) was solved by the
Fig. 2. ]?lstrlbutlon of mass difference method on a Minsk-22 electronic computer. For the differ-
flow density of O, component ence approximation an irregular grid is introduced with the steps
over radius of flat tube: 1) X Ar =V, —Y, & i=12 N
[ i-1 S ) s

= 0.788-107%; 2) 0.175-107%;

3) 0.35-107%; 4) 1.0-10%; 5) Ay =t =0 1L..., M
1.75-107%; 6) 7.5°1072, and partition with respect to Y according to the equation
AR
Y, =
; (\ T /) , 8)

where by setting the size of ihe step near the wall at YN =1, ArN = YN—YN-1 one can find the exponent

In ( N-—-2 \)
N1,

Using the implicit two-layer, six-point difference system of Crank and Nicolson the system of dif-
ferential equations in partial derivatives (1), (2) was reduced to a system of nonlinear algebraic equations
relative to the unknown functions Cjj and 04 at the points (Yy; xj):

AC=B,(C, 8; 48=B8B,(C, &) (10)

where By, B,, C, and ® are vectors (grid functions); A, and A, are constant matrices (at the given j-th
layer) of the three-diagonal type.

The approximation error of the equations and boundary conditions at the wall and at the axis has the
order O{Ax + AY)., The system (10) was solved by the difference trial method with successive iterations
at each layer x = x;. For the choice of Ax and Ar systematic calculations were made for an inert gas with
constant properties and estimates were made of the accuracy of the solutions. Comparisons were made
with the results of an analytical solution {2] for the temperature profiles in the thermally stabilized section
and from the values of the Nusselt numbers over the entire length of the channel studied, as well as from
the thermal balance. The values N = 51 and Arp = Yp—Yy-4 = 0.007 were chosen in our calculations from
the condition of acceptable accuracy.

In addition, the step Ary = Yq{—Y, obtained from Eq. (8) was divided again at five nodes (Ygxj) k = 0,
1,2,...,8. The initial step in x was equal to Ax = 1075, In the interval 10~* = x = 107" the step was
increased by an order of magnitude to Ax = 10~, and in the next interval 10~% < x = 1072 it was increased
to Ax = 1073, To obtain a stable and sufficiently accurate solution this step was also kept for the case of
< = 1072, With such a choice of the step Ax and Ar the error in calculating the temperature profiles did
not exceed 49, for the Nusselt numbers 1%, and for the heat balance 1%,

The distributions of temperature ®, concentration of the Oy component Cy, and mags flow density of
the O, component over the radius of the tube are presented in Figs. 1,2 for the following physical and geo~

metrical characteristics:
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Fig. 3, Variation in Nusselt number along length
of flat tube: 1) chemical equilibrium stream; 2,
3, 4) nonequilibrium stream (2: Re = 57.2; 3: 181;
4: 572); 5) "frozen in" stream,

a= Af/cpfp = Dy = 0.35°107° m?/sec; p = 10 kg/m?; my = 46 kg/kmole; m, = 32 kg/kmole; cpf = 10°
J/kg-deg; Qp = 1.135-10° J /kmole; I = 0.00632 m; W = 0.1 m/sec; Ty = 500°K; Cyy = 0.001; 9T/ 5Y = ayr,
/ Mg =595 deg/m. , .

From Figs, 1,2 it is seen how the growth of the thermal boundary layer, and along with it the dif-
fusional boundary layer, occurs at the section of thermal stabilization in the region of small reduced lengths
X < 0,03, The development of the profile of the mass flow density of the O, component, caused by the con-
centration diffusion q, = (oD, /ry)(8C,/ 8Y) (Fig. 2), depends both on the growth of the diffusional layer and
on the kinetics of the chemical reaction.

An analysis of the results of the numerical calculation was conducted for the case of a change in the
geometry of the flat tube and in the stream velocity averaged over the cross section, with the ratio between
the dimensional and dimensionless length of the channel kept constant (X = 0.875 x). The values of the phys-
ical characteristics and the temperature gradient (8T / 8Y)w at the wall were not changed,

In this case the profiles of the dimensionless enthalpy H and the dimensional enthalpy h for all the
variants were unchanged and only the ratio between the enthalpy components for temperature and concen-
tration varied:

H:@—{-C:-h_—h" ——}”f——; h—hochf(T—T0)+—9£ (C,— Cyp). (11)
' Cps G0 ' m,
The calculation of the Nusselt number was determined from the equation
2
Nu = . (12)
6,—6 .

Distributions of Nusselt numbers along the length of the channel are presented in Fig. 3. The chem-~
ical reaction rate has a large effect on the variation in Nusselt numbers along the length of the channel.
With an increase or decrease in the stream velocity the values of the Nusselt numbers approach the value
for "frozen in" or chemical equilibrium streams. The chemical reaction rate has an analogous effect
on the formation of the temperature and concentration profiles of the gas components,

Adding the differential equations (1) and (2), we obtain

*H
PR o aye
8 0x 13)
X=0, 0<Y<1l: H=0,
X320, ¥=0: _%g_:o,
14
OH
X>0, VY=+1 — =1
- = oy

Equation (13) with the boundary conditions (14) is analogous to an energy equation describing the heat ex-
change during laminar flow of a chemically inert liquid with constant proper’gies in a flat tube and with
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boundary conditions of the second kind, Consequently the fields of dimensionless enthalpy H and dimen-
sionle:s temperaturre ® obtained through the solution of the appropriate equations (1), (2), and (13) will
coincide:

H(X, V) =8;(X, ). | (15)
The values of the average mass enthalpy and temperatures also coincide:
_17 (X) = 6, (X). (16)

Therefore, for a chemically reactive gas the values of Nuy, which relate to the difference of diménsionless
enthalpies:

2
Nuy= ——— 1
T TH—H a7
will coincide with the values of Nug.
Consequently,
Nu _ _He—H Mt (18)
Nu, 0,—9 cpp(he —T) -
Let us define
= _ _hy—B
P Te—T'
then N - .
U Cpe
Ng o (19)
For a chemically equilibrium gas
Tw
- }
Cpe = T 5 CpedT- 20)
T
For a mixture of NO, the maximum values are
N -
¢ = cw ~3.
Nuf Cpf

Equation (19) permits a rather direct calculation of the Nusselt number of a chemical equilibrium
stream. For nonequilibrium streams one must know the difference in concentrations between the values
at the wall and in the stream, which in turn requires that one find a criterial equation for the calculation

of this difference.

NOTATION
Ck = pk/pP is the relative concentration of k-th component;
Pk is the partial density of k-th component;
p= ;"_ Pk 18 the total density;
=t
Qp is the calorific effect of reaction;
Kea is the dissociation rate constant;
K¢, Kp are the equilibrium constants expressed through molar concentrations and partial pres-
sures;
mg, m is the molecular weight of k-th component and of mixture;
Ik is the mass sink or source of k-th component due to chemical reaction;
I is the chemical reaction rate;
qx is the mass flow density of k-th component;
w= 3(1-Y%/2 is the dimensionless stream velocity. The remaining notation is standard.

Subscripts

1 shows that the value pertains to NOy;

2 th'Oz;
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to NO;

to the channel entrance;
to the wall;

to a chemically inert gas,
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